INTERACTION PROBLEMS ON PERIODIC HYPERSURFACES FOR DIRAC OPERATORS ON $$\mathbb {R}^{n}$$
نویسندگان
چکیده
We consider the Dirac operators with singular potentials 1 $$\begin{aligned} D_{\varvec{A},\Phi ,m,\Gamma \delta _{\Sigma }}=\mathfrak {D}_{\varvec{A},\Phi ,m}+\Gamma } \end{aligned}$$ where 2 \mathfrak ,m}= \sum \limits _{j=1}^{n} \alpha _{j}\left( -i\partial _{x_{j}}+A_{j}\right) +\alpha _{n+1}m+\Phi I_{N} is a operator on $$\mathbb {R}^{n}$$ variable magnetic and electrostatic $$\varvec{A=}(A_{1},...,A_{n}),$$ $$\Phi$$ , mass m. In formula (2), $$\alpha _{j}$$ are $$N\times N$$ matrices, that _{j}\alpha _{k}+\alpha _{k}\alpha _{j}=2\delta _{jk}I_{N}$$ $$I_{N}$$ unit matrix, $$N=2^{\left[ \left( n+1\right) /2\right] },$$ $$\Gamma }$$ delta-potential supported $$C^{2}-$$ hypersurface $$\Sigma \subset \mathbb periodic respect to action of lattice {G}$$ {R}^{n}.$$ self-adjointnes discretness spectrum unbounded in $$L^{2}(\mathbb {T},\mathbb {C}^{N})$$ associated formal (1) torus {T=R}^{N}\diagup . study band-gap structure self-adjoint $$\mathcal {D}$$ {R}^{n},\mathbb -periodic regular potentials. also Fredholm property essential non-periodic smooth hypersurfaces
منابع مشابه
Dirac operators on manifolds with periodic ends
This paper studies Dirac operators on end-periodic spin manifolds of dimension at least 4. We provide a necessary and sufficient condition for such an operator to be Fredholm for a generic end-periodic metric. We make use of end-periodic Dirac operators to give an analytical interpretation of an invariant of non-orientable smooth 4-manifolds due to Cappell and Shaneson. From this interpretation...
متن کاملDirac Operators on Hypersurfaces of Manifolds with Negative Scalar Curvature
We give a sharp extrinsic lower bound for the first eigenvalues of the intrinsic Dirac operator of certain hypersurfaces bounding a compact domain in a spin manifold of negative scalar curvature. Limiting-cases are characterized by the existence, on the domain, of imaginary Killing spinors. Some geometrical applications, as an Alexandrov type theorem, are given. Mathematics Subject Classificati...
متن کاملDirac Operator on Embedded Hypersurfaces
New extrinsic lower bounds are given for the classical Dirac operator on the boundary of a compact domain of a spin manifold. The main tool is to solve some boundary problems for the Dirac operator of the domain under boundary conditions of Atiyah-Patodi-Singer type. Spinorial techniques are used to give simple proofs of classical results for compact embedded hypersurfaces.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Self-adjoint operators on surfaces in Rn
Our aim in this paper is to define principal and characteristic directions at points on a smooth 2-dimensional surface in the Euclidean space R in such a way that their equations together with that of the asymptotic directions behave in the same way as the triple formed by their counterpart on smooth surfaces in the Euclidean space R. The definitions we propose are derived from a more general a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2022
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-022-05876-y